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By Arthur D .  Prescott  

ABSTRACT , 7 L 6  A 
The distribution of relativistic unbound charged particles in  

the static magnetic field of a dipole with respect  to a monoenergetic, 
isotropic,  t ime independent homogeneous distribution at infinity is 
determined by assuming Liouville ' s  theorem and the St6rmer theory 
of allowed and forbidden regions for unbound particle motion. F o r  
a n  isotropic distribution, the allowed solid angle for particle motion 
at any given point ( r ,  8 , ) in the field is determined by mapping 
point (r , 8 ,  9 )  into the allowed and forbidden regions of StLrmer 
space,  via the St6rmer transformation, at a particular particle 
impact parameter .  The totally and partially shielded regions a r e  
defined and a r e  examined with particulhr emphasis on the shielding 
effectiveness of the partially shielded region to charged particles.  

cally computed. 

is determined by mapping the point into the totally, partially, and 
unshielded regions in Stormer space with particle momentum as  a 
variable. These methods a r e  then used to compute the proton f l u x  
ratio a t  points on the surface of a spherical spaceship as a function 
of particle kinetic energy. 

I The volumes of the totally and partially shielded regions a r e  numeri - 

established, the momentum cutout in momentum space at point ( r , e , d )  
Once the totally and partially shielded regions a r e  

I 

I 

, 

The theory is applied to the dipole field of a finite cu r ren t .  
loop and a study of the totally and partially shielded regions shows that 
the partially shielded region provides protection in  the high energy 
regime where the totally shielded region is effectively nonexistent. 
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SUMMARY 
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of the allowed and forbidden regions with varying particle impact 
parameter is presented. Liouville's theorem is applied to  the static 
magnetic field and the particle distribution is assumed to be in  equilib- 
r ium over. t ime. With these assumptions, the distribution function of 
particles in phase space at any given point ( r ,  8 , $J ) in a dipole field 
i s  determined, given the isotropia-dilstributi-on a t  infinity. If an  isotropic 
angular distribution at infinity i s  assumed, we find we can determine the 
allowed directions for particle motion at point (r, 8 , $J ) by mapping 
the point into the allowed and forbidden regions in St5rmer space, via 
the Stormer transformation, a t  a particular particle impact parameter .  
The properties of the totally and partially shielded regions a r e  then 
enumerated. Once the totally and partially shielded regions a r e  e s -  
tablished we find we can determine the momentum cutout in momentum 
space at point (r,  8 ,  4 )  by mapping the point into the total, partial ,  
and unshielded regions in Stb'rmer space with particle momentum as 
a variable.  These methods a r e  then used to find the proton flux ra t io  
at points on the surface of a spherical spaceship a s  a function of particle 
kinetic energy. 
shielding to the impinging particles.  It i s  shown that the shielding 
effectiveness of the magnetic field depends strongly upon the shape 
of the volume to  be shielded. 

It i s  assumed that the spaceship offers no mater ia l  



Finally the Stormer theory i s  extended to  the finite cur ren t  
loop, and expressions for the allowed directions for particle motion 
and the momentum cutout a t  any point in the field a r e  derived. The 
shape of the totally and partially shielded regions a s  a function of 
particle energy i s  studied and we find that the partially shielded region 
provides protection in the high energy regime where the totally shielded 
region is effectively nonexistent. 

I. INTRODUCTION 

F o r  many years  the motion of charged particles in the e a r t h ' s  
magnetic field has  been studied. 
particles in an infinitesimal dipole field. 
the equations of motion to study special families of orbits and did the 
original r e sea rch  on the allowed and forbidden regions for particle 
motion. His work explained many of the interesting features  of the 
aurorae and i s  presented in his book [ 2 1 .  
Vallarta refined Stdrmer ' s  theory and studied envelope s of families 
of bound orbits adding additional information concerning the allowed 
unbound orbits through a given point in the f ie ld .  Their work i s  sum-  
marized in Ref. [ 4 ] .  Alfvkn [ 121 added many original contributions 
and studied unbound particle orbi ts  in the regime where the particle 
magnetic mom.ent i s  essentially a constant of the motion. Chapman 
and F e r r a r o  [ 131 postulated the existence of an equatorial ring cur ren t  
during a magnetic storm and Tr ieman [ 141 , Ray [15] , and others  
[ 16 ,  171 studied i ts  effect upon the cosmic r a y  cutoffs on the ear th .  

Quenby and Webber [ 18 ] took into account the higher order  nondipole 
te rms  of the internal field of the ear th  and recalculated the cosmic r a y  
cutoffs on the ear th ' s  surface.  
numerically integrated the equations of motion to determine the impact 
zones of solar cosmic r a y  particles upon the surface of the ear th .  

Stormer studied the motion of charged 
He numerically integrated 

In 1933, Lemaltre  and 

Lust [ 19 1 ,  Jo ry  [ 20 ] , and Kelsall [ 21 ] 

The discovery in 1961 of superconductors with higher cri t ical  
fields and higher cri t ical  cur ren t  densities awakened new interest  in the 
possibility of the shielding of space vehicles with high magnetic fields gen- 
erated by large currents  flowing indefinitely in superconducting mater ia ls .  Thc 

2 



magnetostatic field generated by the circulating currents  would provide 
continuous protection against charged particles in  space. Dow [ 22 1 ,  
Tooper and Kash [23] , Brown [24I , and Levy [ 11 1 have studied the 
shielding effectiveness of magnetostatic and electrostatic fields f rom 
a systems standpoint. Tooper and Kash concluded that an electro-  
static system of concentric spheres was impractical. Dow showed 
that if ordinary conductors were used to  c a r r y  the large cur ren ts ,  
passive shielding is always superior.  
loop and concluded that magnetic shielding was superior weightwise 
for high particle energies (approximately 1 Bev). Urban [ l o ]  studied 
the allowed and forbidden regions of two coaxial current  loops and also 
the magnetic quadrupole. 
allowed and forbidden regions of the infinite solenoid. 
these basic geometries i s  helpful in understanding the basic physical 
principles involved and is necessary to  discover the interesting charac - 
t e r i s t ics  of each magnetic configuration. 
of Units is used throughout this report .  

Levy considered a single cur ren t  

Tooper and Kash initiated a study of the 
The study of 

The 1960 International System 

11. S T ~ R M E R  THEORY SUMMARY 

A. General Equations of Charved Particle Motion in a Static 
Magnetic. and a Static Electr ic  Field 

The Lagrangian for charged particle motion in  a t ime -independent 
magnetic and a time -independent electric field is: 

where 

and 

L =  T - U  

mv * v T =  
2 
A -  

(I1 - 1) 

(I1 -2) 

- A  

The quantity 
particle motion in a static magnetic and electric field. 
spherical coordinates 
potential and the e lec t rosk t ic  potential are functions of r and 8 
only, the Euler  -Lagrange equation provides two equations of motion 
and a f i r s t  integral  of motion corresponding to the cyclic coordinate 4 : 

-qA v t q6E i s  the generalized potential for charged 
Employing 

(r, 6 ,  4 ) ,  and assuming the magnetic vector 

3 



mr2 t 2mri-6 - m r 2  sin e cos e J~ - qr  cos e $ ~ d ( r , e )  

(I1 -3) 

(I1 -4) 

mr2  sin' 8 6 t qr  sin 8 A$(r ,  6 )  = P4 = constant of the motion 
(I1 - 5) 

Since the Hamiltonian i s  independent of time [ 1 3 ,  it i s  a constant of 
the motion: 

H = T t q4E = constant of the motion 

B. Charged Part ic le  Motion in a Steady State Dipole Magnetic Field 

In a static magnetic field, the Lorentz force 

A 

i s  perpendicular to the velocity vector during the motion, for  E = 0 . 
A s  a resu l t ,  the speed of the particle o r  the kinetic energy of the particle 
i s  a constant of the motion. Rewriting Eq. (11-5) and dividing by the 
magnitude of the mechanical momentum, mv , we obtain 

i f  

(I1 - 6) 

2 Y E  - 3 
P 

(I1 - 7) 
(I1 - 8) 

4 



' F o r  an infinitesimal dipole: 

If the dipole is orientated along the z-axis (Fig. 1) then A, = Ae = 0, 

M sin 8 
A,#,= 47rr2 

Substituting Eq. (I1 -1 0) into Eq. (11 -9): 

2 Y  + QzqM-  sin 8 
47rp r 2  r sin 8 ' 

If 

2 qM - 
47rp 

cst = - 
then 

2 Y  + Q = Cs-t - 2 s ine  
r2 r s in  8 * 

(I1 - 1 0) 

(I1 -1 1) 

(11-12) 

The angle @ is the angle the velocity vector makes with the 
A A  

meridian plane or  sin @ = - v  vd. 

If the canonical momentum component P4 , a constant of the 
motion, is evaluated at infinity, A,#, -. 0 and - 2 Y  becomes the 
impact parameter .  
equatorial plane the impact parameter i s  the closest  distance of 
approach to the z-axis with the magnetic field absent. In general, 
- 2 7  i s  the rat io  of the particle angular momentum about the 
dipole axis to the total linear momentum at infinity, and i s  a constant 
of the motion. 
tional particles impinging upon the dipole, the sign of the 

F o r  a particle whose velocity vector l ies in  the 

To an observer traveling with a group of monodirec- 

5 
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impact parameter distinguishes between those particles passing to the 
left and the right of the dipole, assuming the field i s  absent. 
Stzrmer radius,  
is the radius of a particle with charge q and a momentum p moving 
in  a circle  in the equatorial plane of a dipole of strength M . 
unbounded orbit in  the equatorial plane with 7 = - 1.  0 is asymptotic 
to this bound orbit. 
bounded motion and the Stormer radius i s  considered a lumped parameter ,  
Since the magnetic field simply changes the direction of motion, a 
particle originating "at infinity'' re turns  to  infinity. 
side of Eq. (11-12) to a nondimensional form by introducing the non- 
dimensional parameters  

The 
Cst , has dimensions of length and for bounded motion 

The 

However, we shall be concerned only with un- 

Reducing the right 

Y Y E -  
- 

c s t  

r p = -  
c s t  

we obtain the familiar Stormer equation [ 21 : 

- 
sin 8 2 Y  Q = s i n @  = .- t 

p sin 8 * P 

(I1 - 13) 

(I1 -14) 

(I1 -1 5) 

Since Q E - V ~ / V  , particle motion is restr ic ted to those regions such 
that - 1 . O S Q S  1 . 0 .  Solving Eq. (11-15) for p : 

sin' 6 (11-16) P =  - - y * d p  t Q s i n 3 8  

The restr ic t ions that p remain positive and r e a l  places res t r ic t ions 
on the parameters  7 and Q , i. e .  

(11-17) 

7 



sin2 e 
-7 t d T 2  t Q sin3 e 

P ,  = - 

sin' e P3 = 

Using  p(-1,  1) a s  - a shorthand notation 

("" strictions 
on Y 

fQ < 0 

E < f / s i n  3 e 

(I1 - 18) 

(I1 -2 0 )  

for  "~(7, Q) with r =  - 1.0  
and Q = 1 . 0 ,  P 1  ( Y ,  1) defines an  inner forbidden region with Q = 1 .  0 
on its outer boundary. Q i s  greater  than 1 . 0  within this region. F o r  
-a0 57 < O  , P 2  (7, -1) and P3 ( Y, -1) 
with Q = -1 .  0 on i ts  outer boundaries. Q is  l e s s  than - 1. 0 within 
this region and particle motion is  forbidden. 
regions a r e  plotted in Fig.  2 for three values of Y . F o r  Y 4 - 1 . 0  , 
P I (  Y ,  - 1)  and P ( Y ,  -1) define - an  inner allowed region; and a n  outer 
allowed region extends - f rom P3 ( 7,- 1) to infinity. - The outer - forbidden 
region exists for - a , l  y < 0 and disappears at Y = 0. F o r  Y slightly 
greater than zero,  the inner forbidden region sends up small  appendages 
on either side of the dipole axis.  Thus the z-axis is  in  an  allowed region 
only for 7' = 0 , and the origin i s  accessible only to particles such that 
- 1 . 0  < 7 6 0.  Since Eq. (11-16) is independent of 6 , the forbidden 
regions a r e  rotationally symmetric - about the z-axis. The behavior 
of the forbidden regions a s  
Throughout this section, the particles a r e  assumed to move at non- 
relativistic velocities. However, Eq. (I1 -12) is valid at relativist ic 
velocities and all  previous statements a r e  valid i f  we use the relativist ic 
expressions for the momentum and kinetic energy: 

define a n  outer forbidden region 

The forbidden - and allowed - 
- - 

- 

7' varies  i s  described in  a la ter  section. 

1 
[ T ~  t ZT mc2]Z 

C 
P =  

1 
2 4 2  2 T = [ p 2 c 2  t m  c 3 - m c  

(I1 -2 1) 

(I1 -22) 

8 



The particle speed is a constant of the motizn, since the Lorentz force 
is perpendicular to the velocity vector for  E = 0. 
of motion a r e  derived in  Appendix I. 

Relativistic equations 

C. StGrmer SDace and Related Topics 

The Stgrmer transformation (Eq. 11-14) i s  a t r a n s -  
formation which connects the radial  coordinate r with kinetic energy, 
T . The distribution function of particles in phase space f ( r ,  e , $ ,  T, 
a ,  p ) --+ f ( p ,  8 , $ , a ,  p ). Thus, instead of considering orbi ts  of particles 
of different energies in  a fixed field, we may find the orbit of a particle 
with a given energy in St6rmer space,’ ( p ,  8 , 4  ). 
change of scale,  we know the orbits fo r  particles of any other energy 
with the same injection point and direction of injection into the field. 

Then by a linear 

The advantage of studying the forbidden and allowed regions in 
StGrmer space is a s  follows. The equations 

(I1 -2 3) 

sin’ e P =  (I1 -24) 
1 +d- 

define the radius of the ear th  (a sphere) - and the inper and outer f o r -  
bidden regions in  StGrmer space for Y = -1.0.  
invariant with particle energy, while the ear th’s  radius changes ac  - 
cording to Eq. (11-23). p i s  nondimensional and therefore the scale 
has no units. In r e a 1 space the equations become 

Equation (11-24) is 

rE = constant (I1 -2 5) 

sin’ e 
(I1 -26) 

In r e a 1 
bidden regions change with particle energy according to  Eq. (11-26) . 

space ( r ,  e , $ )  , the radius of the ear th  i s  fixed and the for - 
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The scale has units of length o r  units of C,t . 
of me te r s  depending, in a fixed field, upon the par t ic le 's  charge and 
momentum. 

Cst  is a given number 

F igures  3 and 4 show Cst for  electrons and protons as a 
function of particle energy in  different dipole moment magnetic fields. 
At nonrelativistic energies,  in a fixed f ie ld  

A s  the particle energy increases  without bounds: 

Thus the electrons in a low-energy monoenergetic beam of electrons 
and protons a r e  deflected by the magnetic field sooner than the protons. 
In  r e a l  space,atnonrelativistic energies, the forbidden regions in a 
dipole field for protons should be scaled by a factor 6 . 6  to a r r ive  at 
the forbidden regions for the electrons. 
field does not distinguish between electrons and protons, that i s ,  it 
is equally effective a s  a shield. 

A t  relativist ic energies,  the 

F r o m  a mathematical standpoint, the Starmer equation (Eq. 11-1 5) 

Sufficiency is guaranteed by solving a l l  of the equations of motion 
is a necessary condition that a particle must satisfy to exist at a given 
point. 
simultaneously. The p curves shown in F i g .  2 a r e  the outer boundaries 
of the allowed orbits projected upon the meridian plane. StUrmer 
showed that particle motion could be broken into two coupled motions - 
motion of the particle within the meridian plane and motion of the 
meridian plane about the dipole axis.  
to the cyclic coordinate 4 
makes with the meridian plane a s  a function of position within the 
meridian plane, a s  the particle impact parameter var ies .  

Equation (I1 -9) corresponding 
determines the angle the velocity vector 

11 
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111. PARTICLE DISTRIBUTION IN THE MAGNETIC FIELD 

i OF AN INFINITESIMAL DIPOLE 

A.  Liouville's Theorem and Its Application to a Static Magnetic Field 

Consider a swarm of n particles in  a 2n phase space (qi ,Pi)  , 
i = 1 , .  . . , n .  At a particular time t ass ign a number to each point to 
represent the density of particles per unit volume of r ea l  space per 
unit volum.2 of momentum space.  
f ( q i , R ,  t)". with the aforementioned units to give the function relation- 
ship between the numbers .  Then, taking the total derivative: 

Define a scalar  point function 

(111 - 1 ) 

Applying Liouville's theorem and assuming the particle density i s  low 
enough s o  that the particles do not collide: 

df - 0 - _  
dt 

(I11 -2)  

df - = 0 i s  a lso the mathematical statement of the collisionless, no 
dt radiation loss, Boltzman equation. 

Assuming the particle distribution i s  i n  equilibrium over time: 

If the generalized coordinates and generalized momenta satisfy Hamil - 
ton's canonical equations of motion: 

.*. 'I. 

In this paper, small  parentheses a r e  used to indicate functional 
dependence within an equation. 

14 



then 
r 1 

(I11 - 3) 

or 

[ f ,  H I  = 0 (I11 -4) 

where the brackets of Eq. (111-4) a r e  the Poisson brackets. 
(Ref. 1) f is a constant of the motion along a t ra jectory generated by 
the Hamiltonian in phase space. Equation (111-2) is the mathematical 
statement of Liouville's theorem. 
known, Liouville ' s  theorem will furnish information about the particle 
distribution in  the field without solving for the t ra jector ies  of individual 
particles and recording the number of particles in each volume element 
with a given energy and direction over a large t ime interval. 

Consequently, 

If the nature of the force field i s  

Since the equations of motion of a charged particle moving in 
a static magnetic field can be derived using Hamilton's canonical equa- 
tions of motion (Appendix I), and assuming the particle distribution is 
in equilibrium over t ime, and applying Liouville's theorem, then the 
distribution function f is a constant of the motion along a t ra jectory 
through phase space. 

Consider a six-dimensional space composed of three position 
coordinates and three canonical momentum coordinates. 
tion to a static magnetic and static electric field, it would be more 
convenient to  apply Liouville's theorem to  a six-dimensional space 
composed of three position coordinates and three mechanical momentum 
coordinates. We will show that the Jacobian 

F o r  applica - 

(I11 - 5) 
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under the transformation 

where Ai  i s  the ith component of the magnetic vector potential, Pi 
is  the canonical momentum and p{ is the mechanical momentum. 
Writing out this sixth order determinant and observing that 

the determinant becomes 

0 B11 B 21 

0 ’  E 1 2  B 22 

1 B13 23 

0 1 0 

0 0 1 

0 0 0 

i = 1 , 2 , 3  
j = 1 , 2 ,  3 

E Bij 

B3 1 

B32 

B33 

0 

0 

1 

and when expanded, the determinant is equal to one. 
shown by Swann [ 31 who noted that Eq. (I11 -5) i s  valid even when a 
s ta t ic  electric field i s  present;  
by Eq. (111-6). Thus we may integrate over mechanical momentum 
space instead of canonical momentum space. Henceforth, the word 
momentum will r e f e r  to the mechanical momentum. 

This was f i r s t  

the canonical momenta a r e  still  given 

16 



B. Monoenergetic , Isotropic , Homogeneous Distribution a t  an 
Infinite Distance Away f rom the Dipole 

Let f(< F) be the distribution function r e fe r r ed  to in Liouville's 
A A 

theorem where qi, Pi , i = 1 , 2 , 3  a r e  the components of r and P , 
respectively. The mechanical momentum vector may be defined 
by giving the kinetic energy of the particle and the direction of motion: 

A d  

f(r ,  p)d3p = f(;, T , h )  dTd 52. (I11 - 7) 

L A  

Since the speed v is a constant of the motion, vf(r ,  P) i s  conserved, 
by Liouville's theorem, along a trajectory in  phase space which connects 
two points in  r ea l  space. Of course,  a given point in r ea l  space may 
be intersected by more than one tr_aj_ectory through phase space, but. 
Liouville's theorem states that f(r,P) is constant and has the same 
value along a given t ra jectory and its projection in r ea l  space. 
more ,  t ra jector ies  cannot intersect in phase space. Liouville's 
theorem together with the constants of motion determine the distribu- 
tion functions which a r e  constant at two points in r ea l  space connected 
by a t ra jectory through phase space. The equations of motion provide 
u s  with the coordinates of the two points along with the limits on the 
integrals.  F o r  a n  isotropic distribution, it i s  unnecessary to determine 
the direction dependence of the particle orbit explicitly. Flux i s  defined 
by the integral: 

Further  - 

F r o m  the l a s t  section: 

(I11 -8) 
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Henceforth, we shall drop the differentials when re fer r ing  to the 
distribution function. 

The flux "at infinity" is  

(111 -9 )  

Invoking Liouville's theorem: 

A h 

vf(F,T,Q) = vf (F ,T ,a ) ,  . (111 - 1 1) 

F o r  a monoenergetic, isotropic,  homogeneous source at infinity of 
energy To : 

(I11 - 12) 

Equation (111-10) becomes 

d n  sin CY dQd6 (I11 - 14) 
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Referring to Fig.  1, rc/ is the angle between the velocity vector and 
the meridian plsne; and ff is its complement. The particle d i s t r i -  
bution vf(F, T ,  a) i s  symmetric in angle 
invariant to rotation of v about the perpendicular to the meridian 
plane. 

P , since Eq. (11-15) i s  
A 

Equation (11-15) defines a cone of directions with half angle Q :  

and Eq. (111-15) becomes: 

(I11 - 1 7) 

To determine Ql and Q2 , we must  examine the expansion and con- 
traction of the forbidden regions, defined by Eqs.  (11-18), (11-19), and 
(I1 -20), with varying impact parameter.  

C. Dependence of the Forbidden Regions on I m m c t  Parameter  

An isotropic distribution at roo implies that the impact param-  
eter  of a particle may have values -005 - 2 Y 5 -  o r  
T > 0. Differentiating Eqs. (11-18), (11-19), and (11-20): 

- 
-00 I - ~ Y I o o ,  

(I11 - 18) Y t a P1 1 - =  
Q sin t Q sin3 O' a7 Q sin 8 

- 
Y 

l t  (I11 - 19) 2 =  a P  

a ?  Q sin 8 Q sin e+ + Q sin3 e 

- 
Y aP3 - - (111-20) 1 - -  - a y Q sin 8 Q sined-YZ + Q sin3 e 
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The inner forbidden region defined by P l ( 7 ,  1) is  very  small compared 
to the outer forbidden - region defined by P 2  (7, -1) and P3 (7, - l ) ,  for  
y << -1.0. A s  Y * 0 the inner forbidden region expands with respec t  
to p and the outer forbidden region contracts. The outer forbidden 
region disappears at 7 = 0 while the inner forbidden region continues 
to expand a s  7 becomes more  positive. 

- 

Given a point (1, 8 ,  $1, the equations 

P = r /Cs t  (111 -2 1) 

2 7  + Q = -  sin 8 
P 2  p sin 8 (I11 -22) 

- 
define Q , given Y and Cst which is defined by Eq. (11-1 1). Consider 
the important case Y = -1.0 shown in F ig .  5. In light of the preceding 
discussion, i f  the point falls within the inner forbidden region, it will 
forever be inaccessible to incoming particles regard less  - of their  impact 
parameter , for the inner forbidden region expands as  Y increases  
from -1 .0 .  As 7 becomes slightly greater  - than -1 .0 ,  point B will 
begin to see particles until for some Y (Q = 1 .0 )  the inner forbidden 
region engulfs the point. F o r  case C , a s  Y increases  f rom - 1 . 0 ,  
the outer forbidden region will contract  until point C falls on its boundary 
Q = - I .  0. 
ticles with various Q until for some r (Q = l . O ) ,  the inner forbidden 
region will engulf the point. 

- 

AS 7 continues to increase point c will continue to see pa r -  

To  analyze case D, we shall have to consider the case  7 < -1.0, 
F o r  some large negative Y (Q = -1. 0) ,  point D will fall on the boundary 
of the outer forbidden region. A s  7 increases  from this value, the 
outer forbidden - region will contract and point D will begin to see  par t i -  
c les .  Let Y continue to become more  positive, then point D continues 
to see particles of various Q until for some Y (Q = 1 . 0 )  the inner for - 
bidden region will engulf point D. 

- 

- 

- - -  
Thus, at a particular Y , namely Y = Y = - 1 . 0 ,  points within 

the inner forbidden region will never subtend any solid angle to incoming 
particles. Points within the inner allowed region will subtend a solid 
angle ranging from slightly greater  than 0 up to slightly l e s s  than 4 r .  

20 



Fig.5-ALLOWED AND FORBIDDEN RE0lONS IN THE (h@) 
PLANE FOR 7 m - 1 . 0 .  
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There will always be a range of impact parameters  such that points 
within the outer forbidden and.outer allowed region will subtend 4~ 
solid angles to incoming particles,  regardless  of the distance from 
the dipole since - 00 5 2  75 . With Liouville's theorem in mind, 
at 7 = Yc = - 1.0,  points within the outer allowed and outer forbidden 
regions canbe connected up to infinity in any direction by t ra jector ies  
through phase space. 
connected up with infinity in certain directions. 
inner forbidden region can never be connected up to infinity by a tra- 
jectory through phase space. 
void of particles regardless  of the particle distribution at infinity. 

Points within the inner allowed region can be 
Points within the 

Thus the inner forbidden region i s  totally 

In any magnetic field whose outer forbidden region completely 
surrounds the inner forbidden region at some 7' = Y c  , and whose 
forbidden regions behave in the same manner as the forbidden regions 
of the dipole field in the sense that one forbidden region expands while 
the other contracts with varying impact parameter ,  then the inner 
forbidden region at 7' = Y c  will always be completely void of particles 
regardless  of the particle distribution at infinity. F r o m  Eq. (I1 -9) , 
for 
field will behave in this manner i f  A,#,Q1/rn , n 2 2 . 

- -  

- -  

- 0 0 5 2 ~ ~  00 , it appears that the forbidden regions in any magnetic 

We define Qc as the value of Q computed from Eq. (IX-22) - -  
with y = y 
angle subtended a t  points within the inner allowed region. 

= - 1. 0. cos -' Qc is the cone half angle of the allowed solid 

2c st (I11 -2 3 )  sin 8 2 z s i n 8  
r sin 8 Q c = - -  = Cst  yz - P2 p sin 8 

We can determine which of the four regions point ( r y e  ,,#,) will be mapped 
into, under the St'brmer transformation, by performing tes ts  on Qc 
and a Qc/ap . The four regions have the following unique properties: 

Inner forbidden region: 

Outer forbidden region: 

Q, 2 1. 0 

Qc 5 -1. 0 I 
Inner allowed region: 

Outer allowed region: 

- 1 . 0  < Q, < 1 . 0  and a Q C / a p  < 0 

-1 .0 < Q, < 0 and a Q c / a p  > 0 



Given a point (1, 8 ,$ ) and computing Qc from Eq. (111-23) then: 

’ (’) - 0 . i f  Qc 2 1. 0 (completely shielded region) (111-24) - 

(c om plet e ly un shie lde d r e gi on) A 

-1.0 < Q c <  0 and- 0 (111-25) 
a p  

aQc < 0 1 
“) - ~ [ l  - Q c ] i f  -1.0 < Q c  < 1 . 0  and - m -  a P  

Figure 6 shows the totally shielded and partially shielded regions in 
the (p,8)  plane. The regions a r e  rotationally symmetric about the 
dipole axis.  

A refinement of the theory by Lemaitre and Vallarta predicts 
that certain directions a r e  forbidden within the inner allowed region 
for -1 .0  < Y 5-0.788541 but our use of the St6rmer theory will predict 
conservative resul ts  without resorting to numerical integration to 
determine bound orbits. Their theory, briefly, i s  as follows: orbits 
a r e  not distinguished by the total energy such a s  orbits in a gravitational 
field. 
jection point and the direction t h a t  
(since the particle kinetic energy i s  a constant of the motion). Lemaitre 
and Vallarta have shown [4 ,5 ,  and 61 that bound orbits exist within 
the inner allowed region even when the outer forbidden region has 
opened up - allowing unbound particles from infinity to enter .  
bound orbi ts  a r e  bounded - by an  inner periodic and an  outer periodic 
orbit which coalesce a s  
a point , that direction is forbidden to unbound particles and a l so  
to other bound particles following different orbits;  for none of the 
t ra jector ies  in phase space can inter sect in phase space. 
energy i s  a constant of the motion, this direction a t  

- 

In StGrrner space, a particle’s orbit depends only upon its in-  
it is injected into the field 

These , 

If a bound orbit  passes through Y --0.788541. 

Since kinetic 
i s  forbidden 
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Fig.6-SHIELDED REGIONS OF AN INFINITESIMAL MAGNETIC 
DIPOLE FIELD IN THE ( p , 8 )  PLANE. 
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to all unbound particles,  regardless  A of their kinetic energy. 
has shown that at points P within the inner allowed regions, an izfini- 
tesimal and/or a finite bundle of bound orbits may pass through 
Thus infinitesimal or finite solid angles, o r  both, may be forbidden to 
unbound particles arriving a t  points 
region . 

Schremp [ 71 

P . 
(P , e )  within the inner allowed 

We can also add further information to F i g .  6 about the range 
of impact parameters  particles must  have to exist in  a region of the 
( p , e )  plane. Solving Eq. (111-22) for 2 7 :  

2 7  = s inO[QP - -  sine I 
P 

(I11 -2 7) 

- 
Suppose we reverse  our procedure and plot curves of constant Y with 
Q as a parameter.  
intotwo sub-intervals: - 1 . O s Q r O  and O < Q s l . O .  F o r  - 1 . 0 5 Q 5 0 ,  
Y is negative and particles with negative impact parameters  may exist 
anywhere within the (P,8) plane except within the totally shielded region. 
F o r  
information: inside the boundaries of the surface 

Let us divide the range of Q for aiiowed motion 

- 

0 < Q 5 1.0  , setting 2 7  = 0 in  Eq. (111-27) provides the following 

(111 -28) 

particles with negative impact parameters may exist. Outside this 
surface, particles with positive impact parameters may exist. The 
surface P l ( 0 , l )  = is the smallest surface of these Q and 
Y = 0 surfaces.  
defines a limiting surface. Inside this surface, only particles with 
negative impact parameters  may exist. Outside this surface, particles 
with positive or  negative impact parameters may exist. P r ( 0 ,  1) is 
the dotted curve plotted in  F ig .  6. ~1 (-1, 1) is the boundary of the 
completely shielded region. 
these two - surfaces have impact parameters within the interval 
- 1.0 5 Y 50. 
this volume. Consequently, particles existing within the partially . 
shielded - region must have impact parameters within the interval 
- 1 . 0 5  Y S O .  

- 
Examining the entire interval -1. 0 5 Q 5 1. 0 , ~ 1 ( 0 ,  1) 

Par t ic les  within the volume bounded by 

We notice that the partially shielded region l ies within 

Other curves P1("/, l ) ,  - l . O <  71 5 0  could be plotted 
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on the ( p , 8 )  plane. These curves would fall inside pl(O, 1). Par t ic les  
with impact parameters  within the interval 0 5 Y 5 Y 1 may exist any- 
where inside these surfaces except within the totally shielded region. 
Thus only particles with a definable range of impact parameters  can 
exist within a small  volume within the - partially shielded region. 
range l ies within the interval 

- -  

This 
-1. 0 5  'Y 5 0  . 

The advantage of the above approach i s  that we can find easily 
the range of impact parameters  that particles must  have to exist 
within a given a rb i t r a ry  volume in  St6rmer space,  given an isotropic 
distribution a t  infinity. We note that we have studied the behavior of 
the inner forbidden region P l(Y, 1) with varying impact parameter  
to determine the range of impact parameters  particles must  have to 
exist  within a given volume in StSrmer space. We studied the inner 
and outer forbidden regions to determine the allowed solid angle at 
all points in Stgrmer space, given an isotropic distribution at infinity 

Given a point in  St6rmer space, we can also determine the 
range of impact parameters  of particles passing through the point. 
The cone half angle of the allowed solid angle at any point within the 
partially shielded region is  given by Eq. (111-23) and 2 7  is given by 
Eq. (111-27). The range of impact parameters  of particles passing 
through a point ( p ,  e )  within the partially shielded region can be found 
by allowing Q of Eq. (111-27) to take on values f rom 1 to Qc . Similarily 
the range of impact parameters  of particles passing through a point 
( p ,  6 )  anywhere within the unshielded region can be found by allowing 
Q to take on values from 1.0 to -1.0. 

Number density f(F) with units of particles/cm3 is defined 
in t e rms  of the f l u x  by 

4 @(a f ( r )  = - . 
V 

(I11 -29) 

Dividing Eqs.  (I11 -24), (I11 -25) , and (I11 -26) by v , we obtain the number 
of density ratio at any point in  space: 

(I11 - 3 0) 
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< O  (I11 -32) 1 aQc - 1 . 0  < Q c  < 1 . 0  and - - -  
a P  

- [ l  - Qc] if  ftr'i 
f (  "1 

D. Isotropic, Continuous Energy Distribution Homogeneously 
Distributed an Infinite Distance Away F r o m  the Infinitesimal 
Dipole 

I .  Integrated Differential Number Spectrum o r  Flux Spectrum 

In this section, we shall determine the flux spectrum and cutoff 
momentum o r  energy at  any point in rea l  space. We shall study the 
mapping of a given point ( r ,  8,9 ) in  real space into Stormer space 
( p  , 8 ,  9) under the Stormer transformation, with particle energy as 
the variable.  

A continuous flux distribution in  energy can be thought.of as  
made up of many monoenergetic distributions of varying intensity. 
Giyen the energy spectrum of the flux at roo,  the energy spectrum 
a t  
derived Eqs .  (I11 -24), (111-25), and (I11 -26) for the monoenergetic 
distribution. Rewriting these equations to emphasize their energy 
dependence : 

A 

can be computed at as many energy points a s  desired using the 

if Qc(T) I -1 .0  

if -1.O< Qc(T) < 0 and - a Q C >  0 
a P  

a Q c <  0 
1 

- - [1  - Qc(T)] i f  - l . O <  Q,(T) < 1 . 0  and - 6 
@ i  - 2 a p  
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Cgt (T) s in  8 2C,t(T) 
r 2  r sin 8 = 

However, we must  determine the cutoff energy at point ( r ,  8 , 4 ) .  
sidering the St6rmer transformation P = r/Cst(T) , point ( r ,O,$)  
maps multiply into St6rmer space ( P ,  8 , 4 )  as  the particle energy 
varies (see Fig.  7). Par t ic le  energies corresponding to points falling 
within the totally shielded region will not be seen at point (r ,  8 , 4 ) .  
Particle energies corresponding to points falling within the partially 
shielded region will be seen at point (r ,  e , $ )  within an allowed solid 
angle l e s s  than 4 7 ~  . 
solid angle. 
that Qc(T) 2 1 .  Outside this region Qc(T) < 1. Solving Eqs.(II-l4)and (11-11) 
for the momentum: 

Con- 

Part ic le  energies corresponding to points falling 
I within the unshielded region will be seen at point (r,O , 4 )  over a 477 

The totally shielded region is  distinguished by the fact 

(111-33) 

We note that the particle momentum i s  proportional to i f  the 
particle i s  allowed a t  ( P ,  e ) .  Consequently, the maximum particle 
momentum not seen at ( r ,  e ,$ )  corresponds to the point falling on 
the boundary Pl(Y,, 1) 

p" , 

of the totally shielded region. 

Given the a rb i t r a ry  continuous spectra  and notation of F ig .  8 
and a point ( r ,  e , $ ) )  then: 

(111 - 3 5) 

- 
Of course,  the cutoff energy T fy , 1) i s  related to the cutoff 

cutoff c 
momentum by the relativistic equation: 

1 

T ( ~ , Q )  = [ p 2  ("/Q)c2 t m 2 4 2  c ] - mc 2 . (111 -36) 

28 
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Other curves of constant Qc a r e  also plotted in  F ig .  7. We 
notice that other cutoff momenta can be defined, keeping in mind the 
mapping of ( r , 6 , 4 )  into St'brmer space a s  particle energy var ies .  
The maximum particle momentum not seen at ( r ,  8 , 4 )  within a cone 

p (Tc, Qc). Par t ic les  with momenta l e s s  than pcutoff(yc, Qc) a r e  
allowed anywhere within this cone of directions and a r e  forbidden outside. 
This cone opens up as the particle momentum increases .  Figures  9 
and 10 show the cutoff energy for protons versus angle cos-' Qc above 
the eastern horizon at various magnetic colatitudes on the surface of 
a spherical spaceship with a 10 meter  radius and a dipole moment 
of 2.51 x Id weber -meters.  F o r  the earth and for our spaceship 
M/r' = 2.51  x lo7 webers/meter.  

. with half angle cos-' Qc corresponds to the point falling on the boundary 

The allowed cone is just closed for  particle momentum 

(I11 - 3 7 )  
pc utof f 

The cone is half open for particle momenta l e s s  than 

qM s in48  
4m' 

(-1,O) = 
Pcutoff 

and greater than pcutoff( - 1,  
momenta less than 

(I11 - 38) 

). The cone is fully open for particle 

sin' e (I11 -39) 
- sin3 e- 

and greater than pcutoff( - 1, 1). 

Let us  turn our attention to the flux ratio. The flux rat io  at 
point (r,  e ,$)  is C 1.0 in the momentum range plC-1, 1) < p < pz (-1,  -1) 
and is equal to 1.0 for p z p z ( - l ,  -1) where p(r,Q)=CqM/4rrz] P ' ( 7 , Q ) .  
By Eq. (111-33) the particle momentum is proportional to  p2 . However, 
the functional dependence of T upon p varies with energy, being 
proportional to p 2  at relativistic energies and to p4 at nonrelativistic 
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energies. 
results in  a smaller  spread of energy where the flux ratio is  less  than 
1 . 0 .  The flux ratio a t  these energies ,  on our sphere,  i s  proportional 
to 1 - T -  a t  nonrelativistic energies becoming proportional to  
1 - T-’ a t  relativistic energies in the middle and low latitudes for 
particles with Cst >> 1.  0 .  Because T l (  - 1 ,  1 )  s T 2  ( - 1 ,  - 1 )  in the 
higher latitudes, the flux rat io  is  approximately a linear function of 
energy. Since the difference T l (  -1 ,  1)  - T2 ( - I ,  - 1 )  increases  with 
decreasing latitude and since their magnitudes increase with decreasing 
latitude, the flux ratio becomes very near ly  proportional to 1 - T-’ 
in the energy range T1( - 1 , l )  < T < T, ( - 1 ,  -1) on the equator. 
1 1 and 12 show this type of behavior. 

Since PI( -1 ,  1 )  “ P ,  ( -1 ,  -1) ( I .  0 , the relativistic effect 

yz 

Figures  

The number density spectrum a t  point ( r ,  6 , 4 )  can be found 
in exactly the same manner a s  the flux spectrum with a cutoff momen- 
tum given by Eqs.  (111-34) and (111-35). 

2 .  Differential Number Spectrum 

Since we know the cutoff momentum and the allowed solid angle 
a s  a function of particle energy at point 
number spectrum is  easily found. 
defined by the integral 

( r ,  e,($ ) ,  the differential 

I 
Differential number spectrum is 

A particles 
N ( r , T )  = J vf(?,T,fi)dS2 3 J N ( F , T , C ) d a  cm2 sec Mev ’ 

(I11 240) 
am am 

h 
A 

A A 

Let N ( r ,  T,G), = N ( r ,  T,fiiso),; i .  e . ,  a n  isotropic,  homogeneous, 
continuous energy spectrum a t  infinity. 
t rum ratio is 

The differential number spec - 

Jn(-p” T ,  6 )  d s2 

&(- r(r, T 9 mad 0 
N(F,TT) - - (I11 -4 1 ) 
N F a ,  T) 

l-00 

Invoking Liouville’s theorem: 

A A A 

N(< T,a) = N ( f ,  T ,  E N(F, T,n iso), 

~ ~ 
~ 
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Eq. (111-41) becomes 

where 

(I11 -42) 

(I11 -43) 

The problem of determining the limits in Eq. (111-42) is the same 
problem previously encountered in the last section. Consequently, 

(I11 -44) 

(I11 -45) 

Likewise, the cutoff momentum a t  point ( r ,  e , $ )  i s  given by Eqs.  (111-34) 
and (I11 -3  5) . 

3 .  Volume Integral of the Particle Density and Shielding Effec - 
tiveness of the Partially Shielded Region 

A figure of mer i t  o r  omnidirectional attenuation factor which 
describes the effectiveness of the magnetic field a s  a shield against 
particles impinging upon volume V from all allowed directions is 
defined 
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d - number of particles within volume V(p)  with the magnetic field absent 
F(p) = number of particles within volume V(F) with the magnetic field present 

(I11 -47) 

1 - - 
fraction of t h g  

(I11 -48) 

We have mapped our volume into St6rmer space via the StBrmer t r a n s -  
formation. 
shielded region, F = 00 corresponding to an  infinite attenuation co-  
efficient. 
shielded region F <  co . To shield a crew compartment completely 
against a monoenergetic, isotropic distribution of protons , the crew 
compartment should be an oval toroid encompassing the entire totally 
shielded region. 
minimum under these conditions. 
volume V(j5') with the field present is :  

If the volume to be shielded l ies  wholly within the totally 

If any of the volume to be shielded falls outside the totally 

The magnetic moment of the dipole field will be a 
The number of particles within 

= s  V (I11 -49) 

The number of particles within volume V with the field absent i s  
equal to the number of particles within volume V at infinity; 

g(;;od = f(i;bd dV = J J j f(5co) Czt  p2 sin 8dpdOd4. (111-50) 
V 

Assuming the distribution is  monoenergetic at infinity, 

(I11 -5 1) 



If the distribution i s  isotropic at infinity, Eqs.  (111-29), (111-30), and 
(111-31) provide f ( p ) .  
par tially shielded r e  gion: 

Let us  compute the attenuation factor of the 

f(p,) p2 s i n 8  dpd8d4 

] p2 s i n 8  dpd8d4 psin 8 t sin 8 

(I11 -52) 

2 
(I11 -53) = P2 

= 4 JPl[sin' 8 - 2 p l  dpde 
1 -  - 

r*rP2 2 sin d p d e  
Jo JP1 

where 

(I11 -54) 

sin' e 
P z ( - l ,  -1) = 

1 + J1-sin3e 
Equation (111-53) was integrated over p first and then pumerically 
integrated over 8 using Simpson's rule with A8 = 0 . 5  giving the 
resul t  -F(F) = 1.22. 
and partially shielded regions into 
specific volume to be shielded. 
a semi-transparent region adjacent to the opaque totally shielded 
region whose omnidirectional attenuation coefficient is 1.22, indepen- 
dent of the impinging particles' momentum, charge, o r  dipole moment 
of the field. The physical dimensions of these regions a r e  ,importantly, 
functions of these three parameters ,  i. e . ,  the particle Stcrmer radius. 

To interpret  this number, let us  map the totally 
r e a1  space and disregard any 

The partially shielded region is simply 
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Let us compute the volume of the totally and partially shielded 
regions, i. e . ,  

V 

PI (-191) 
= 2 7 C i t  J”J p 2  sin 8 dpde = 0 .  147 d S t  (111-55) 

0 0  

.. p2 sin 8 dpd8 = 0.808 C’,t (111-56) 
P1(-1,1) 

Th’e above inte r a l s  were evaluated numerically using Simpson’s rule  
with A 8  = 0. 5 . The partially shielded region is  approximately 5. 5 
t imes the volume of the totally shielded region. 
volumes a r e  a function of the particle StBrmer radius and can be very 
large for low energy particles a s  we shall observe in a later section. 

g; 
Of course,  these 

Let us  consider two specific volumes to be shielded to examine 
the directional shielding provided by the dipole field over the surfaces 
of these volumes for monoenergetic particles.  
be a sphere \(dotted curve in F i g .  7) with the dipole a t  its center .  The 
low latitudes near the equator a r e  completely shielded, the middle 
latitudes a r e  partially shielded and the high latitudes a r e  completely 
unshielded. F o r  a given small  distance indide the surface of the 
sphere, the allowed solid angles in  the high latitudes a r e  greater  than 
the allowed solid angles on the equator. 
toroid whose surface coincides with the outer surface of the partially 
shielded region. 
latitudes. 
the allowed solid angles in the low latitudes a r e  greater  than the 
allowed solid angles in the high latitudes - diametrically opposite to 
the spherical case.  
given particle energy distribution i s  a subject we shall not investigate 
in this paper. 

Let the f i r s t  volume 

Consider an  oval-shaped 

The high latitudes a r e  shielded better than the low 
F o r  a given small  distance insid6 the surface of the toroid, 

The determination of the optimum shaped volume for a 

4. Constant Flux Surfaces 

In this section we will study the constant flux contour surfaces 
to gain a better understanding of the allowed solid angle and momentum 
cutout at any point in a particular magnetic field. Let f be the flux 
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ratio.  F r o m  Eq. (111-31), in the partially shielded region, 

Rewriting Eq. (111-57) in cylindrical coordinates @ , d ,  z )  , 

C i t R  + 2Cst 2 f = 1 -  (111 -58) 
[R2 + z2]" R 

To determine the curves of constant f l u x  in the equatorial plane we 
set  z = 0 and solve for R , 

2 
[2f - 13 RZ - 2RCst  t Cst = 0 (I11 -59) 

R = Cst 

R 

'1 * -/2 [l - f j  
; f # 5  (I11 -60) 

2f - 1 1 
(111 -6 1) 

To determine which sign must  be chosen in  Eq. (111-60),. we will let 
f be greater  than and l e s s  than 1/2. If f < 1/2, Eq. (111-60) becomes 

(I11 -62) 

We choose the minus sign so that R will be positive. 
Eq. (I11 -60) becomes 

If f > 1/2 , 

(I11 -6 3) 
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If we choose the positive sign, R can be greater  than 
double valued. 
transformation and that the constant f 
shielded region: 

CSt and 
But we know that the StGrmer transformation is  a linear 

surfaces lie in the partially 

C s t [ ? i y - 1 ] 5 R 5  1 .0  Cst for 0 5 f 5 l . O  . 

Therefore, we choose the negative sign again and 

R = Cst (I11 -64) 

Substituting for Cst and solving for the particle momentum, 

(111 -6 5) 

Equations (111-65) and (111-66) a r e  plotted in Fig.  13 for singly charged 
particles in the ear th’s  field, These constant f curves connect points 
in the equatorial plane which subtend the same allowed solid angle, 
and therefore a r e  a lso curves over which the differential number spectrum 
ratio is equal to f . The constant f curves  do not intersect showing 
that the allowed solid angle i s  unique at every point in the field for an  
isotropic, monoenergetic distribution at infinity. The region beneath 
the f = 0 curve i s  void of parti’cles. The region above the f = 1.0  curve 
subtencfs a 47r solid angle to the particles.  

The curves of constant f in the (R, z )  plane, i. e .  , the meridian 
plane, are the - StGrmer curves of constant Q within the inner allowed 
region for Y =-1.0 , and a r e  shown in  Fig.  14. The radial  coordinate 
in Stbrmer units has  been converted to ear th  radi i  for select proton 
kinetic energies.  The curves a r e  symmetr ic  about the dipole axis  
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and in the x-y plane generating toroidal surfaces in r ea l  space. 
notice that the constant f surfaces a r e  not uniformly spaced. The 
surfaces  a r e  spread out in the low latitudes encompassing a large 
region of r e a l  space, becoming closer together in the high latitudes. 
They a r e  infinitesimally close together at  the origin.  
that the partially shielded region extends out many ear th  radii  in the 
equatorial plane, beyond the geomagnetic cavity boundary for low 
energy par t ic les .  

We 

We also observe 

I 

4 5  



IV. PARTICLE DISTRIBUTION IN THE MAGNETIC FIELD 

OF A FINITE CURRENT LOOP 

A. Isotropic , Continuous Energy Distribution Homogeneously 
Distributed an Infinite Distance Away F r o m  the Current  Loop 

A finite circular current  loop of radius,  a ,  consists of a con- 
ductor with an  infinitesimal c r o s s  -sectional a r e a  carrying a very 
large current.  
tial of the finite dipole approaches the vector potential of the infinitesimal 
dipole. 
and the magnetic field is an axially symmetric field about the current  
loop axis. 
directed along the positive z-axis.  
Ref. [8]. 

As the loop radius approaches zero,  the vector poten- 

The vector potential i s  in the same direction a s  the current ,  

The loop i s  in the xy plane with its dipole moment vector 
The vector potential i s  given by 

where 

A 4  = Mk2 C (k) 1 
7rza [ rz  t a’ t 2ar sin e]” 

4 a r  sin 8 k2 = 
r 2  t a 2  t 2ar sin 8 

(IV-1) 

(IV -2) 

(IV - 3 )  

C(k) is a special complete elliptic integral and is  defined in t e rms  
of the complete elliptic integrals of the f i r s t  and second kinds [ 91 : 

[ 2  - k2] K ( k )  - 2E(k) 
k 4  

C(k) = 
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ddJ . v2 

o [l - k2 sinZdJ]k 
K(k) E J 

.T2 1 

E(k) E J [l - k' sin' dJIz d$ 
0 

As k '0, C(k) +n /16  ; and as k + 1, C(k) -, 00. The vector potential 
approaches infinity at the loop and we would expect a forbidden region 
to exist around the loop. Substituting Eq. (IV-2) in  Eq. (11-9): 

qMk' C(k) 2 Y  
pn2a[r2 + a 2  + 2ar sin eYh+ r sin 6 Q =  (IV - 5) 

Dividing the numerator and denominator of the quantities on the right 
hand side of Eq. (IV-5) by C i t  and Cst  respectively: 

where 
a x z -  

c st 

4Ap sin 8 k2 = 
p ' +A2 + 2hp sin e 

(IV -6) 

(IV-7) 

(IV -8) 

Observe that we have a new parameter 
particle Stzrmer radius in comparison to the radius of the loop. Thus, 
in StGrmer space, the boundaries of the forbidden and allowed regions 
a r e  no longer independent of the particle Stzrmer radius.  - 

is t reated a s  a new parameter and for a given Q , , and , 
Eq. (IV-6) i s  solved by iteration to find P a s  a function of 6 . F o r  
a given X , the forbidden and allowed regions behave exactly in the 
same manner with varying impact parameter as the forbidden and 
- allowed regions of the infinitesimal dipole. 
7' , the outer forbidden region completely surrounds the inner forbidden 

which is a measure of the 

f 

Consequently, 

F o r  some large negative 

I 
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and inner allowed region. 
appears. 
continues to expand indefinitely. 
scription of this behavior. The forbidden and allowed regions have 
the same properties as  the forbidden and allowed regions of the in- 
finitesimal dipole at ? = Yc : 

At 7 = 0,  the outer forbidden region dis - 
A s  7 becomes more  positive, the inner forbidden region 

Reference [ 101 contains a clear de- 

Inner forbidden region: Qc 2 1 . 0  (IV -9) 

Outer forbidden region: Qc 5 -1 .  0 (IV - 10) 

Inner allowed region: - l .O< Qc < 1. 0 and % < ,  
a P  (IV-11) 

Outer allowed region: -1 .0  < Q, < 0 and Gc > 0 
ap  

” 
The ( p  , 8  ) coordinate system is defined subsequently. Figure 1 5  shows 
the forbidden and allowed regions for three select  impact parameters .  

Whereas,  the outer forbidden region of the infinitesimal dipole - -  - 
pinched off at y = Y c  = -1 .0 ,  Yc is a function of X for the current  
loop, A saddle point exists a t  = Tc and the saddle - point method treated 
in Ref. [ 101 provides the functional dependence of Y c  upon : 

where 

x 
pc k =  

E(k) t [kz  - 11 K ( k )  
k2 

B(k) = 

(IV - 12) 

(IV - 13) 

(IV-14) 

(IV- 15) 

p, 
equatorial plane, of the ( P ,  8 )  coordinate system. 

is the radial  distance of the saddle point f rom the origin, in the 
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FORBIDDEN RE6W Ea 

Fig. IS-ALLOWED AND FORBIDDEN REGIONS OF PARTICLE MOTION IN THE (#,e) 
PLANE FOR THREE SELECT VALUES OF 7 WITH A *  0.02. 
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- 
Table I gives computed values of Y and P for select values of . 
Equation (IV-12) i s  solved by iteration - for P , and Y c  i s  then com-  
pu ted f romEq.  - (IV-13). A s  A - 0 ,  -Y,’p, - 1 . O ; a n d a s  X-00, 

- 

- Yc’Pc/2 -.A * 

We shift our coordinate system origin to the loop by the t r ans -  
formation: 

p sin e = x t sin T 
N 

P cos  e = p cos 
(IV - 16) 

N N  

where 

i s  the radial  coordinate measured from the loop. 
becomes: 

( p  , 8 ) i s  the polar coordinate system centered on the loop. 
i s  measured from the perpendicular to the plane of the loop and 7 

Equation (IV-6) 

- 
(IV - 17) 4k2 C (k) 2 Y  

~ X C [ ~ L  t 4x2 t 4 ~ ~ s i n  x t i; sin Q =  

where 
N w 

(IV - 18) 

This coordinate system has the advantage that for a given Q , A  , r  , 
and ; P-izsingle valued. We also define a corresponding coordinate 
- system - (r ,  e )  in r e a 1 s p a  c e. Rewriting Eq. (IV-17) and setting 
Y = Y c :  

N 

N 

Differentiating Eq. (IV-19) with respect  to P and employing the necessary 
differentiation formulae for elliptic integrals in Jahnke and Emde: 
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x 

5 

2 x 

5 x 
-1 

10 

2 x 10-1 

5 x 10- 

3 .6  x 10-1 

1 . 0  

2 . 0  

5 . 0  

l o 1  

5 x lo1 

1 o2 

1 
2 x 10 

2 

2 

2 x 10 

5 x 10 

I d  

TABLE I 

Computed Values of 

Selected Values of h 

- 
y c 

-1.0000044 

-1.0000185 

-1.0000749 

- 1.0004684 

-1.0018709 

- 1.0074358 

- 1.0236563 

-1.0446118 

-1.1598476 

- 1.5006854 

-2.8061874 

-5.1959389 

-10.1198181 

-25.0595632 

-50.0341544 

-100.0192378 

-250.0068096 

-500.0047909 

PC 

1.0000438 

1.0000564 

1.0002250 

1.0014050 

1.0056047 

1.0221818 

1.0697641 

1. 1298177 

1.4405107 

2.2691984 

5. 1213780 

10.0626318 

20.0316664 

50.0127189 

100.0063642 

200.0031828 

500.0012732 

1000.0006366 

P; = p , / x  

200.0028767 

100.0056444 

50 .01  12522 

20.0281010 

10.0560472 

5.1109088 

2.9715670 

2.2596354 

1.4405107 

1.1345992 

1.0242756 

1.0062632 

1.0015833 

1.0002544 

1.0000636 

1.0000159 

1.0000025 

1.0000006 
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a Q c  - - 2 Y c  sin 8 
2 +  

- -  a i r  [ A  + sin 

where D(k) is another special complete elliptic integral. 

We a r e  now in a position to compute the allowed solid angle 
at any point in the field. Given a point (F, v,b) in r e a l  space 
and a loop radius,  a , we map the point into ( p ,  8 , b  ) coordinates 
by the St6rmer transformation and Eq. (IV-7). We compute Yq 
from Eqs.  (IV-12) and (IV-13). Next we compute QC and a & / a i r  
from Eqs. (IV-19) and (IV -20) to d e  t e r m ine which of the four 
regions contains the point. 
case of the infinitesimal dipole: 

N N  

- 

The allowed solid angle L? is ,  as  in  the 

L? = 0 i f  Qc 2 1 . 0  (IV -2 1) 

if Qc 5 - 1 . 0  

if - 1 . 0  < Q c <  0 and a c .  0 (IV -22) 
a P  

0 = 2n[1  -ac] if  -1.O< Qc < 1 . 0  and - a% < 0 (IV-23) 
a P  

N N  

The momentum cutoff at point ( r ,  8 , r#I ) is  given by Eq. (III -34): 

(IV -24) 

- 
To compute p(yc, 1)  , we recal l  that Y c  is a function of particle m o -  
mentum through A and pc of Eqs.  (IV-12) and (IV-13). Qc of 
Eq. (IV-19) i s  set equal to one and Eqs.  (IV-12), (IV-13),  and (IV-19) 
aLe-solved simultaneously by i teration to obtain p ( Y  c ,  l ) ,  given point 
( r ,  8 , 4)  and loop radius, a . 

N -  
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A s  a n  example, F igs .  16 and 17show the f l u x  ra t io  in  the field 
of a current  loop with a radius of ten meters.  The points a r e  on the 
surface of a toroid F =  10 meters  at selected . The loop has  the 
same dipole moment as the infinitesimal dipole. We notice that, for 
the current loop, there  is a smaller  variation of the cutoff energy 
with latitude compared to the infinite simal dipole. 

The totally shielded region is oval-shaped for small  X becoming 
more nearly circular as X increases .  The partially shielded region 
is also oval-shaped, becoming more  circular as increases .  As 
X increases  even fur ther ,  the partially shielded region becomes oval- 
shaped again, confined to polar angles near the plane of the loop a s  
shown in F ig .  18 . 
a large,  flattened doughnut-shaped region around the loop and high- 
energy particles a r e  forbidden to enter a smaller circular doughnut- 
shaped region. 
regions in the ( p ' ,  8 ) plane for  selected X . The ( p' ,  8 )  coordinate 
system is a coordinate system in r e a 1 s p a  c e in  which the forbidden 
and allowed regions a r e  normalized by the loop radius according to the 
transformation: 

Thus, low-energy particles a r e  forbidden to enter 

Figure 18 shows the totally and partially shielded 

r 
X a p ' = - -  P - - (IV -2 5) 

Equation (IV -6 )  becomes 

2 7  
~ p t  sin 8 

t 4k2 C(k) 
Q =  n X 2 [  p'2 t Z p t  sin 8 t 1]Lz 

(IV -26) 

(IV -2 7) 

The adv'antage of this coordinate system is  that the loop is located 
at p' = 1 , 8 = "/2  , independent of the loop radius. 

The distance, AP'T , between the intercepts of the totally 
shielded region in the plane of the loop is plotted in F ig .  19, r ep ro -  
duced from [ 113 . A s  Levy pointed out, the totally shielded region 
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Fig.6-RELATlVlSTlC PROTON FLUX RATIO TEN METERS FROM A 
CURRENT LOOP WITH A RADIUS OF TEN METERS AT g=2Oo. 
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Fig. I7 - RELATIVISTIC PROTON FLUX RATIO TEN METERS FROM A 
CURRENT LOOP WITH A RADIUS OF TEN METERS ATSELECT 
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Fig.  18 - SHIELDED REGIONS IN THE (d, e )  PLANE 

O F  A FINITE CURRENT LOOP 
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is largest  for small  X , i . e .  , the loop is  more effective a s  a shield 
for particles with a large Stormer radius in comparison to the loop 
radius. 

1. 0 and then its effectiveness decreases  very rapidly with X . 
The distance, 
region in the plane of the loop is a lso plotted in Fig.  19 .  
decreases slowly with X and at = 1 . 0 ,  AP'p/AP$ M 10'. F o r  
larger , this ratio increases  very  rapidly with increasing . 
We observe that the partially shielded region exists when the totally 
shielded region has  disappeared, and thus assumes  an  additional 
importance in  the high energy regime where the totally shielded 
region i s  so small that i t  i s  insignificant. 

The loop i s  quite effective a s  a n  "all o r  nothing shield" up to 

Apb , between the intercepts of the partially shielded 
Ap'p 

Figure 20 shows the constant flux contours in  the ( r ,  0 )  plane 
of our 10-meter current  loop, analogous to Fig.  14, for 6 . 8 7  Bev 
protons and other particles of equal rigidity. 
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APPENDIX I 

EQUATIONS OF MOTION IN SPHERICAL COORDINATES 

The relativistic Hamiltonian for  charged particle motion in a 
static magnetic field i s  (Ref. 1) : 

H =  

where 

A P e ; +  P d  ; A 

P = P r r t -  
r r sin 8 

F o r  our dipole field: 

(IA - 1) 

(IA -2) 

(IA - 3) 

Hamilton's canonical equations provide us with the equations of motion: 

* - L  P c2 
- r2H 

(IA -4) 

(IA - 5) 

(IA -6) C 2  

H r sin 8 

(IA -8) P case ~1 
Po - - L[x H r sin 8 - qA4][+ L r sin t q  a e  I 

P4 = 0 

60 

(IA -9) 



Since (Ref. 1): 

(IA - 10) 

where Pi is the particle canonical momentum (linear or angular) 
conjugate to the ith coordinate and pi is the particle mechanical 
momentum (linear or angular) conjugate to  the i th coordinate; then 
Pr is the r-component of the linear mechanical momentum and P O  
is the 8 -component of the angular mechanical momentum vector. 
Even though the potential field is velocity dependent, the Hamiltonian 
is still the total energy and a constant of the motion [ 1 1 : 

H =  2 mc (IA - 1 1)  

Since the total energy is a constant of the motion, p i s  a l so  a constant 
of the motion. If 

= -P r  
P 

(IA - 12) 

(IA - 13) 

and dividing and multiplying Eqs. (IA-7) and (IA-8) by p2 , and r e -  
calling Eqs. (11-8) and (11-9), Eqs. (IA-7) and (IA-8) become: 

(IA - 1 5) 

Solving Eq. (IA - 15) simultaneously with Eqs. (IA -4), (IA -5), (IA - 6 ) ,  
we obtain: 
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(IA - 16) 

- -  2y cos 8 
r sinz 8 p a 8  

5 = - r 4 s i n e  
P 

If 

(IA-18) 

(IA - 19) 

(IA -20) 

- 
the most complete implicit solution for r in St'brmer space is: 

1 Q  X p $  sin 8 - - 
r 2 - r =  - - s -  4 7  X d p t ~ ~ Q X ~ ~ d 8 -  4 .+ co 

(IA-21) 

F o r  our infinite simal dipole, Eq. (IA - 17) may  be integrated explicitly 
and solved simultaneously with Eq. (IA -1 8): 

Equation (IA-22) gives i= as a function of particle motion projected 
onto (8 ,4)  coordinate surfaces ( i . e . ,  surfaces P = constant). - 2 r  
is the rat io  of the 8 component of the particle mechanical momentum 
about the origin of the dipole centered coordinate system to the total 
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linear momentum, analogous to the impact parameter -2Y a t  infinity. 
r is analogous to Q , and Ci a r e  a rb i t ra ry  constants. 

Solving Eq. (IA - 14) simultaneously with Eqs  . (IA -4), (IA -5), 
and (IA - 6 ) ,  we obtain: 

7’ sin 8 d 4  2 7  q p s i n e  aA4 
P Q P 2  P a P  ] ’ “(IA -25) 

-4J 

A - -  complete implicit solution analogous to Eq. (IA-22) giving T = ~ ( p ,  8, 
4 ,  Y, r, C& ) can be easily derived: 

T 2  - 2 7  = 2 i[-p- 4r2 t QY] d p  - J [F t s] p2 de 

- 4~ p s i n e  t C: ? s i n  Od4 
- 4 s  QP2 

(IA -26) 

(IA -2 7) 

For the infinitesimal dipole, portions of Eqs. (IA -23), (IA -24), and 
(IA -25) may be integrated explicitly: 
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- 
sin 8 r 

7 = 2 s  - d o t  + -1 P d 8  - Cg (IA-29) 
P 

sin2 8 
= r2 Qp2 sin 8 d$ P [ . + I  - c6 (IA - 3 0 )  

7 i s  the cosine of the angle between the radius vector and the projec- 
tion of the particle momentum vector onto the meridian plane. 
to Fig.  I ,  7 

in spherical coordinates: 

Referring 
= sin CY cos p . 7 , Q ,  i? a r e  re lated by expressing 

(IA - 3 1 ) 

Equation (IA -22) may be solved simultaneously with Eqs .  (IA -29) 
and (IA -30) yielding 
jected onto surfaces P = constant. Equations (IA-2l)and ( IA-27)  a r e  
coupled nonlinear integral equations. 
r as  functions of particle motion in three -dimensional space - a highly 
desirable solution. 

7 explicitly as  a function of particle motion pro - 

Their solution would give 7 and - 
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